Skip to main content

High-oleic oil: What’s all the fuss?

How does chemical structure affect chemical performance?

Trans fat is out, so back to the drawing board. In this unit, students will explore the chemical behavior of molecules related to the structure by 1) examining how the structure of high-oleic oil changes its performance characteristics, 2) learning methods of representing the structure of a molecule, 3) exploring research on high-oleic oil and 4) conducting a study of their own to compare high-oleic oil to regular refined soybean oil sold to consumers for cooking purposes.


Teacher background

Vegetable oils are lipids, more commonly known as fats. Other examples of common lipids include butter, cholesterol and other steroids, waxes, phospholipids, and fat-soluble vitamins. The common characteristic of all of these compounds is that they are essentially insoluble in water yet soluble in one or more organic solvents. The chains of fatty acids that make up oils affect the behavior of the oil when it is used.

DuPont and Monsanto have developed soybeans that produce high-oleic oil (oils that are higher in monounsaturated fat than regular soybean oil). This oil provides a longer shelf life for foods that have been processed, and allows for better stability in high temperature cooking situations. They have used a process called gene silencing. This process was used to suppress expression of an enzyme in the seed to limit the amount of linoleic and linolenic acid development, that increases the content of oleic acid. By using this biotech process, a very stable trait was produced that results in more than 75 percent oleic acid, despite the varying environments in which soybeans may be grown. Watch this video about a farmer who grows high-oleic beans.

Next gen standards

Science and engineering practices

  • Asking questions (for science) and defining problems (for engineering)
  • Planning and carrying out investigations
  • Analyzing and interpreting data
  • Obtaining, evaluating, and communicating information

Crosscutting concepts

  • Cause and effect
  • Structure and function
  • Stability and change

Disciplinary core ideas/content

  • LS1A Structure and Function
  • PS1A Structure of matter
  • PS1B Chemical reactions
  • ETS2 Links among Engineering, technology, science and society
  • ETS2B Influence of engineering, technology and science on society and the natural world

Curriculum authors




Comments powered by Disqus